

Structural

Non-structural

Structural

- Detention Dams and Basins
- Conveyance Conduits, Channels, Floodwalls and Levees

Nonstructural

- Elevation
- Floodproofing
- Relocation

Example Measures

Example Measures

Structural

Concrete Channels

Example Measures

Structural

Stormwater Conduits

USACE Examples

Phelps Dodge Basin

All of the second secon

Structural

USACE Examples

Structural

Border Land Diversion - Right Levee

USACE Examples

Structural

Example Measures

Green infrastructure: Implementation of GI on this corner in a Tucson neighborhood captures runoff that previously flooded the street while creating a community asset.

Before

Green Infrastructure

Curb Cut with Rain Garden

Green Infrastructure

This long, shallow swale in the right of way has multiple curb cuts along its length.

At this site in Tucson, a 3" deep swale was created in the ROW to collect runoff from the sidewalk and adjacent property.

Example Measures

This series of basins collects stormwater from the adjacent sidewalk and businesses (without curb cut).

Different swales and basins

Median with curb cut

Example Measures

Green Infrastructure

Curb cuts on a street in Flagstaff, AZ (left) and curb cores on a street in Tucson (right) are used to direct stormwater runoff from the street into basins **before** pollutants reach washes and rivers.

Cut Curb and Curb Cores

Bioretention basins, like this one between a restaurant parking lot and the street, capture and filter stormwater. Landscape area is graded **below** the level of the parking lot.

Sedimentation and absorption occur when stormwater is slowed down and is allowed to pool in basins.

Green Infrastructure

Bioretention Basin

Source: Green Infrastructure for Southwestern Neighborhoods, V1.2, Revised 2012

Traffic circle with curb flush with street level

Example Measures

A curb cut draws stormwater from the street into a bioretention basin in the right-of-way.

Green Infrastructure

Example Measures

Chicane with curb cut

Chicane

In this just-installed chicane, 4"-8" rip-rap is used in the channel where stormwater will flow rapidly, and 1" gravel covers upslope areas.

Figure 7: Pervious Pavers (Interlocking Porous Concrete Pavers) Source: City of Phoenix, Office of Environmental Programs.

Example Measures

Incompacted Subgrade Soil Pervious Surfaces

Green Infrastructure

Permeable pavers reduce impervious surface areas and aid in heat island mitigation. Photo: Watershed Management Group

Figure 9: Example Porous Concrete Installation Source: City of Phoenix, Office of Environmental Programs

Example Measures

Non-structural

Structural

- Detention Dams and Basins
- Conveyance Conduits, Channels, Floodwalls and Levees

Structural

Nonstructural

- Elevation
- Floodproofing
- Relocation

• Elevation

Example Measures

Elevated First Floor Elevation (1523.0)

Water Surface Elevation (1521.5)

Basement/Crawlspace Elevation (abandoned)

Lowest Adjacent Ground Elevation (1515.5)

• Elevation

ELEVATING UNREINFORCED FOUNDATION

Elevate superstructure only

Wet Floodproofing

Example Measures

Flood vents allow water to enter the basement, preventing excessive pressure from developing on the basement walls. (floodflaps.com/new-construction/)

Successful wet floodproofing involves the following:

- Ensuring that flood waters can safely enter and exit the lower level of the house
- Ensuring that flood waters inside and outside the house rise and fall at the same rate
- Protecting the areas of the house that are below the flood level from damage caused by contact with flood waters
- Protecting or relocating utilities, service equipment and any materials stored below the Flood Protection Elevation

• Dry Floodproofing

Example Measures

- Water resistant sealant applied to walls
- Entrances retrofitted with flood proof barriers

Dry Floodproofing - Passive

<image>

• Dry Floodproofing

Example Measures

Dry Floodproofing - Active

Dry Floodproofing

Image from FEMA's Bulletin: Building with Flood-Resistant Materials

NONRESIDENTIAL MASONRY BUILDING

Relocation

Ţ

